Jste zde

F7PBBMS - Modelování a simulace

Kód Zakončení Kredity Rozsah Jazyk výuky
F7PBBMS Z,ZK 4 2P+2C česky
Přednášející:
Jan Kauler (gar.)
Cvičící:
Jan Kauler (gar.), Lucie Horáková
Předmět zajišťuje:
katedra biomedicínské informatiky
Anotace:

Základní pojmy a důsledky modelování a simulace. Umět používat metodologie modelování a simulace. Důraz je kladen na důkladné pochopení kompartmentových modelů, fyziologických modelů, Farmakokinetiky. Dále na spojité a diskrétní modely populační dynamiky, epidemiologické modely, modely venerických onemocnění.

Požadavky:
Osnova přednášek:

1. Základní pojmy simulace. Cíle a důsledky modelování a simulace. Metodika vytváření modelu. Identifikace parametrů. Experimenty. Objektivní realita, dynamický systém, matematický a simulační. Modely a jejich popis. Neformální a formální popis. Formy matematického popisu spojitých a diskrétních systémů.

2. Spojité a diskrétní modely jednodruhových populací. Spojitý Malthusův model. Spojitý logistický model s konstantními a proměnnými parametry. analýza vlastností jeho řešení. Spojité modely jednodruhových populací se zpožděním. Diskrétní modely jednodruhových populací. Diskrétní varianty Malthusova a logistického modelu. Diskrétní modely jednodruhových populací se zpožděním. Modely svěkovou strukturou - Leslieho model.

3. Modely dvoudruhových populací. Model dravec-kořist. Analýza modelu Lotky - Volterry. Kolmogorovův model. Model dravec -kořist se zpožděním. Modely dvoudruhových populací. Modely konkurence. Modely spolupráce

4. Epidemiologické modely - základní epidemiologické modely. Model SIR. Kermackův - McKendrikův model - odvození. Podmínky šíření epidemie, odhad maximálního počtu nemocných, odhad počtu obětí. Modely SI, SIS.. Model SIR spřenašeči a vakcinací. Modely SEIR.

5. Epidemiologické modely - modely dynamiky venerických onemocnění. Odvození křížového modelu. Analýza vlastností řešení. Model šíření AIDS.

6. Podrobné blokové schéma procesu modelování biologických systémů. Metodika vytváření modelu. Inverzní problém-optimalizace vektoru parametrů.

7. Podrobné blokové schéma procesu modelování biologických systémů-dokončení. Jakost odhadu parametrů modelu, návrh nového resp. doplňujícího experimentu. Význam citlivostních funkcí při návrhu nového experimentu.

8. Kompartmentové modely. Odvození matematického popisu kompartmentových systémů. Tvorba modelů kompartmentových modelů. Příklady použití kompartmentových systémů vbiologii a medicíně.

9. Opakování - příklady využití modelů.

10. Analýza modelu, analýza citlivosti.

11. Potápění a modelování. Farmakokinetika.

12. Empirické modely.

13. Deterministický Chaos.

14. Case Studies (model regulace gylkémie, model regulace kyselosti žaludku, model kinetiky značeného aldosteronu, model regulace tepové frekvence při fyzické zátěži, analýza, použití v praxi a v tréninkovém procesu)

Osnova cvičení:

1. Úvod do cvičení. Motivace ke studiu Modelování a simulací. Opakování prerekvizit. Seznámení sprostředím SIMULINK. Demonstrace grafického programování na jednoduchých matematických modelech bakteriálního růstu a fyziologického systému.

2. Biokybernetika. Fyziologické řízení. Sestavení modelu a linearizace.

3. Modely jednodruhových populací -spojitý Malthusův model. Analýza. Experimenty s parametry modelu vprostředí MATLAB-Simulink. Implementace časového zpoždění do modelů jednodruhových populací. Diskrétní Malhusův a logistický model.

4. Diskrétní model jednodruhové populace svěkovou strukturou - Leslieho model, simulace a analýza vprostředí Simulink.

5. Modely dvoudruhových populací. Model dravec -kořist; návrh, simulace a analýza vprostředí Simulink. Model dravec - kořist se zpožděním.Určení rovnovážných stavů a stability.

6. Epidemiologické modely. Model SIR; návrh struktury, simulace vprostředí Simulink, analýza modelu. Model SIR s přenašeči a vakcinací. Křížový model - model šíření AIDS.

7. Kompartmentové modely. Farmakokinetika.

8. Identifikace parametrů. Optimalizace [2]. Metoda nejmenších čtverců.

9. Citlivostní analýza.

10. Písemné přezkoušení. Zadání týmových projektů.

11. Simulace v NetLogo. Analýza týmového projektu ve skupinách.

12. Analýza a implementace týmového projektu ve skupinách.

13. Implementace a simulace týmového projektu.

14. Prezentace týmového projektu.

Cíle studia:

Studenti budou schopni simulovat vývoje populací včase za různých podmínek, jak ve spojitém tak diskrétním čase a odvozovat potřebné parametry. Počítat rychlost šíření nákazy pro různé podmínky šíření nákazy. Zjišťovat šíření léčiva v organismu využitím kompartmentových modelů apod.

Studijní materiály:

Povinná literatura:

[1] HOLČÍK, Jiří. Modelování a simulace biologických systémů. Praha: Vydavat.ČVUT, 2006. ISBN 80-01-03470-4.

[2] KANA, Michel. Tutorial for modeling and simulation of biological processes. Praha: České vysoké učení technické v Praze, Nakladatelství ČVUT, 2010. ISBN 978-80-01-04491-9.

Doporučená literatura:

[1]POTŮČEK, Jiří. Metodologie modelování biologických systémů. V Praze: České vysoké učení technické, 2009. ISBN 978-80-01-04412-4.

[2]MEURS, Willem van. Modeling and simulation in biomedical engineering: applications in cardiorespiratory physiology. New York: McGraw - Hill, c2011. ISBN 978-0-07-171445-7

Poznámka:
Předmět je součástí následujících studijních plánů:
Materiály ke stažení: