You are here

17ABBITP - Integral Calculus

Code Completion Credits Range Language
17ABBITP Z,ZK 5 2+2
Grading of the course requires grading of the following courses:
Linear Algebra and Differential Calculus (17ABBLAD)
Lecturer:
Eva Feuerstein (guarantor), Helena Říhová
Tutor:
Eva Feuerstein (guarantor), Helena Říhová
Supervisor:
Department of Natural Sciences
Synopsis:

The subject is an introduction to integral calculus and integral transforms.

Integral calculus: anti-derivative, indefinite integral, properties and methods of integration (integration by parts and by substitution, partial fractions), definite integral, properties, Newton-Leibnitz fundamental theorem, simple applications of both indefinite and definite integrals, improper integral, solving differential equations (ODEs) (1st order ODEs with separable variables, linear 1st order homogenous as well as non-homogenous ODEs, 2nd order linear homogenous and non-homogenous ODEs with constant coefficients),intro to multiple integrals, particularly double integral and applications.

Integral transforms: Laplace transform and inverse Laplace transform and their application for solving nth order linear ODEs with constant coefficients.

Z-transform and inverse Z-transform, their application for solving nth order linear difference equations.

Requirements:

Assessment:

1.Maximum 3 absences during the semester for serious reason.

2. Activities at seminars will be checked by mini-tests (10 minutes,1-2 tasks). There will be 8 mini-tests during the semester, evaluated by 5 points each.Total sum MT ranging from 0 to 40 points.

3. Midterm tests

1st test in Wednesday March 6th at 4pm at lecture room C1,

2nd test in Wednesday May 18th, 4 pm at lecture room C1.

Midterm test consists of 4 tasks, each task evaluated by 5 points (maximum 20 points at a midterm test). A student must gain from one midterm test at least 10 points, it means that minimum gained from both midterm tests must be at least 20 points. So, VT ranging from 20 to 40 points.

Student's grading from seminars transferred for the exam:

MT:8 + VT:4 - ranging from 5 to 15 points.

Additional term for missing midterm tests Wednesday May 25th at 6pm, lecture room B201.

Exam:

Assesment recorded in KOS together with the points transferred for exam by respective teacher.

Exam is only written, lasts 90 minutes.

It is forbidden to use a calculator or mobile phone during the exam.

The exam consists of

1. 7 tasks, evaluated by 10 points each, in total maximum 70 points

2. 5 tests, evaluated by 2 points each, in total maximum 10 points

3. 5 tests, evaluated by 1 point each, in total 5 points

4. Evaluation at seminar-points transferred maximum 15 points

Exam grading

A: 90-100, B: 80-89, C: 70-79, D: 60-69, E: 50-59, F: less than 50

Syllabus of lectures:

1. Introduction to indefinite integral, basic properties, elementary functions integration, integration by parts, integration by substitution.

2. Rational functions integration, partial fraction technique.

3. Integration of trigonometric functions, combined techniques of integration.

4. Introduction to definite integral, simple geometrical applications (area, volume of rotational bodies, curve length).

5. Improper integral, introduction to differential equations, general solution.

6. Differential equations, initial value problem for ODEs, 1st order ODE with separable variables, linear 1st order ODEs homogenous and non-homogenous, method of variation of constant, homogenous ODEs (substitution z=y/x).

7. nth order linear ODEs with constant coefficients and their solution.

8. Double integral, introduction and elementary methods of its calculating.

9. Jacobian and substitution in double integral, polar coordinates, geometrical applications of double integral.

10. Laplace transform- definition, properties and examples.

11. Inverse Laplace transform, application of Laplace transform for solving IVP for homogenous and non-homogenous nth order linear ODEs with constant coefficients.

12. Z-transform - definition, properties and examples.

13. Inverse Z-transform, Test No. 2

14. Z-transform for solving linear difference equations.

Syllabus of tutorials:

1. Elementary functions integration, integration by parts, integration by substitution.

2. Rational functions integration, partial fraction technique.

3. Integration of trigonometric functions, combined techniques of integration.

4. Definite integral, simple geometrical applications (area, volume of rotational bodies, curve length).

5. Improper integral, simple examples of improper integrals due to the function or due to the infinite interval of integration, introduction to differential equations, general solution.

6. 1st order ODE with separable variables examples, linear 1st order ODEs homogenous and non-homogenous, method of variation of constant, examples.

7. Homogenous ODEs (substitution z=y/x), nth order linear ODEs with constant coefficients and their solution.

8. Double integral, introduction and elementary methods of its calculating.

9. Jacobian and substitution in double integral, polar coordinates, geometrical applications of double integral.

10. Laplace transform properties and examples.

11. Inverse Laplace transform and application of Laplace transform for solving IVP for homogenous and non-homogenous nth order linear ODEs with constant coefficients.

12. Z-transform properties and examples.

13. Inverse Z-transform. Simple examples.

14. Z-transform for solving linear difference equations.

Study Objective:

The goal of the subject is to gain necessary theoretical background in the field of integral calculus and integral transforms and practical skills in solving various examples and problems of fundamental integral calculus, and integral transforms.

Study materials:

Study materials

[1] Neustupa J.: Mathematics 1, skriptum ČVUT, 2004

[2] Bubeník F.: Problems to Mathematics for Engineers, skriptum ČVUT, 2007

[3] Stewart, J. : Calculus, Brooks/Cole, 2012

[4]

Note:
The course is a part of the following study plans:
Downloads:

Lectures: 
AttachmentSize
PDF icon IC_1_2015217.64 KB
File IC_2_2015216.88 KB
PDF icon IC_3_2015204.24 KB
PDF icon IC_4_2015567.8 KB
PDF icon IC_5_2014469 KB
PDF icon IC_6_2014476.83 KB
PDF icon IC_7_2014356.27 KB
PDF icon IC_8_2014739.7 KB
PDF icon IC_9_2014496.42 KB